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Abstract. Explicit realization of SU,(Z) algebra is found in terms of operators acting on a 
hvo-dimensional sphere and depending on (e, p) variables. The mrresponding eigenfunc- 
tions ('spherical q-functions') appear to be a ?generalization of ordinary Legendre 
polynomials. The recurrence relations and explicit expression in terms of Askey-Wilson 
polynomials are obtained. The weight function of these polynomials is expressed via 
double-periodic elliptic functions. 

1. Introduction 

Recent global investigations of the quantum groups and algebras, especially the 
SU,(2) algebra, are mostly concentrated around general problems such as spectra, 
multiplet structure, etc. The problem of explicit expression for representation func- 
tions still escapes the attention of specialists in the field. The situation is still more 
astonishing because historically ~ the representations of the rotation group were 
discovered before the group structure itself was established. 

Here, we would like to fill this gap, dealing with spherical functions for the SU,(2) 
algebra rather than the SU,(2) group. 

The commutation relations for this algebration are [l] 

[Ja, J+] = f J +  [J, ,  J-] = (sinh 2wJa)lsinh o. (1.1) 

In what follows we shall assume that o > 0. 
The representations are defined by the equations 

where 

J~=J~J++(cosho(2J , ,+1)) / (2s inhz~)  (1.26) 

is the Casimir operator of SU,(2) and A, is its eigenvalue. 
These are all the preliminaries needed. 
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2. Choice of realization 

We are going to construct the reps on the two-dimensional sphere with ordinary 
metrics in Hilbert space given as 

Ya I Granovskii and A S Zhedanov 

In what follows it will be assumed that variables are separated 

yj,,,(e, q)=@*Y,(e). (2.2) 
Consequently the operators .Ik have the form 

Jo= ia, J ,  = A(a+U-aV-’) J-=A(aV-a+U-’) (2.3) 

where the operators a and a’ are mutually commuting with U and V and A is a 
normalization constant. 

The commutators (1.1) are identically satisfied if 
[ J O T  U1 = U [J,,V]=-V W= VUexp(2o) 

2A’sinh w UV= exp(o(1 + 2iaJ (2.4) [a+,a],= -exp(w). 

Here we have used the so-called ‘q-mutator’ 

[ L ,  M],=exp(w)LM-exp( -w)ML.  (2.5) 

U= exp(iq + iwa,) V=exp(-iq+ioa,). (2.6) 

Equations (2.4) are easily solved giving the result 

We then obtain the appropriate normalization factor 
A = (exp(2w) - l)-”’. 

Noting that the quantum number m is an integer of any sign and that Iml =Zj, then, 
from (1.26), we have 

,Ij= (cosh w(2j+ 1))/(2 sinh’o). (2.7) 
The next step is a construction of operators a+ and a in terms of lattitude variable 0. 
Working in the same manner 

a=B(e)(?‘+ T - ’ )  a*=B(e ) (W+ W-I) (2.8) 

T= exp(i0 + iwa,) W=exp(-i0+iwa,) 

B(B)=1/[2(1-e-2”)1‘’sine]. 

and we obtain 

(2.9) 

It may be verified that for w+O we return to the standard realization of angular 
momentum via the differential operators [2] 

J ,  = exp( ?c iq)( 5 a,+ icot 0 a,). (2.10) 

In our case, due to exponentiation of aq, a, we are really dealing with diference 
operators. For example, the U-operator has the following displacement property 

Uf(q) = exp(iq - o/2)f(q + iw) (2.11) 
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along with corresponding ones for V, T ,  W .  Thus, parameter w is playing the role of 
'quantization' agent in the imaginary direction of the complex pplane. Instead of the 
line, we are running rather on the lattice in this plane. The origin of these properties 
may be traced further, right up to commutation relations (1.1). These imply not only 
anisotropy in representation space but also a cellular structure. 

Note that the last commutation relations (2.4) imply that the operators a and a+ 
are the annihilaton and creation operators for a q-oscillator [3]. Thus the latitude 
dependence of the operators Jk (i.e. &dependence) is provided by a one-mode 
q-oscillator. These results may be compared with the approach of Macfarlane [3] 
where onlyp-dependence of the operators Jk was found. It is surprising that there are 
no classical analogues of this q-oscillator representation because the operators a and 
U+ as given by the formulae (2.8)-(2.9) disappear in the classical limit, whereas the 
operators Jk have the correct classical limit (2.10). 

3. 'Vertical' recurrences 

Equation (1.2) 

J - J + Y i m =  (Ai - L ) V p  = [i- ml V+ m + l l v i m  (3.1) 

[XI = sinh wxlsinh w (3 . la)  

may be written in the form 

J+vlm = a,mv,.m+ I J-ly, ,  m i  I = f i i m V p v  (3.2) 

The raising J ,  and lowering J -  operators are Hermitian conjugated in the metric (2.1) 
so their matrix elements are conjugated also: aim=fifL. Discarding the phase, we have 
[I1 

aim =Bfm = ( [ j -  m] [ j  + m + l])'". (3.3) 

vi,,,((?, p), being eigenfunctions of the Hermitian operator, are orthogonal to each 
other in the sense of (2.1). Extracting from them some factors (see below) one can 
reduce v jm(O,  p) to polynomials being a certain generalization of Legendre polyno- 
mials. There are many possible ways to generalize them [4] but we arrive at one 
suitable for use in equations of the algebra SU,(2). 

Equation (3.2) allows one to derive all the needed functions starting from the 
initial one. Using the displacement properties of the operators U,  V, ?', W we obtain 

( [ j - m ] [ j + m  + l])"* Yf.m+,(B) = (2i sinh w sin e)-' 

Y,,(B+iw)sin(O-iwm)-Y,(B-io)sin(O+iwm). (3.4) 

This and related relations preserve the quantum number j and may be termed 
'vertical' recurrences in view of their geometrical meaning (see figure 1). 

This mathematical structure of (3.4) is rather complicated-it involves a simulta- 
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Figure 1. 

neous alteration of argument 6 and index m. It may be simplified by extractin 
Y,m normalization factors 

w e )  = cim Y-(wu~). 
In what follows we shall assume that m>O, so j a m .  Choosing 

Cim = C,([ j - m]! / ( j  + in]!)"* 
we can get rid of radicals so that 

Qjm(f?+iw)sin(6'-iwm)Ym(B+iw)-(w+-o) 
2sinhwsintJ Y,+,,,,,(e) Q,.*+,(e)= 

from 

(3.5) 

(3.6) 

(3.7) 

The function Ym(0) is the 'highest' in the corresponding multiplet and may be 

Ymm(B+iu)sin(f?-iwm)=Ymm(B-iw)sin(8+iom). (3.8) 

found from the equaiton J + + - = O  or, according to (3.4) 

The solution of this functional equation is w'tten at once as 
m - I  

Ym(0) = Gm(B) n sin(0 + iw(m - 1 - 2k)) 

where G,(O + io) = G,(B - io) is an arbitrary function with period 2iw. 

k = O  

Suppose that G,(O)=g(e+iom), then we reduce (3.7) to the simplest form 

(3.9) 

Q,(e + iw) - Qjm(e - io) 
Q j . m + l ( e ) =  2jshhosine 

This is the difference equation, replacing the usual connection 

P~.,+,(COS e) = - P;,(COS e) 
for ordinary associated Legendre polynomials. 

Defining the difference operator A 

Af(x)  = f ( x  + io) - f ( x  - io) 
equation (3.10) becomes 

Q j . , + d e ) =  - A Q j A W A  cos e 

(3.10) 

(3.11) 

(3.12) 
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in complete similarity to the above-mentioned connection for P,,,,. 
Thus, proceeding from Qi,,,(0), the whole multiplet may be recovered, for our 

purposes, but we need the relation connecting the functions Q, themselves. This 
relation should be of a 'horizontal' type and must be treated in a completely different 
manner. 

4. 'Horizontal' recurrences 

The origin of 'vertical' recurrences (3.4) is the existence of the operatorsJ, conserving 
j and changing m. There are no suitable operators (belonging to SU,(2)) that conserve 
m and change only j ,  giving rise to 'horizontal' recurrence relations. 

Instead, we will exploit the relation 

cos = a,+~., Vi+ I.,,, + aim qJ-1.- (4.1) 
obtained in the appendix by means of our technique employing the AW(3) algebra 
[5]. The matrix elements are [ [i+ ml[j-ml]1i2 

[2 j+1][2j-1]  U, = cosh wj 

As for Qim(0), they obey the relation (taking Cp=[2j+ 1]1'2) 
cos 0 Qim(0) = [ j +  1 - m]/[2j  + 11 e,, ,,,(e) cosh w ( j  + 1) 

of the required 'horizontal' type. For w - 0  the usual recurrence for associated 
Legendre polynomials is restored [6]. 

Solution of (4.3) must be sought in terms of the basic hypergeometric function 

+ [ j +  m]/[2j+ l ]Qi- j ,m(0) cosh wj (4.3) 

.&(ul, . . . ,a4; b,, . . . , b,lx) = ";I X "  (4.4) 
o=o 

,= 1 

where 
(u ;q ) .= ( l -a ) ( l -aq) . .  . ( l -aq"- ' )  (4.44 

Indeed, using the results of Askey and Wilson [4] we can conclude that (4.3) is 
satisfied by function (4.4), with the parameters being 
a1 = q m - /  u 2 = q i + m + l  u3 = eiB q(m+ 1V2 u4=e q 
b l = - b 2 = - b  3 - q  - q = exp( - Zw) x=q.  

This result provides us with polynomial of order N = j -  m because the Pochhammer 
q-symbol (a l ;  4). vanishes for n N. So 

-i8 (m+1)/2 

(4.5) 

Qjm(e)=4%(qm-i, 02, ~ 3 ,  a4; bi, b2, h I q ) .  (4.6) 
Normalization of the derived polynomials is related to the problem of determining 

the corresponding weight function W,,,(O) 
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with some normalization constant A,m. 

‘highest’ function 
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It is evident from (2.1) and (3.5) that the weight function is expressible through the 

(4.8) 
We may confine ourselves to consideration of the case m=O because m- 

dependence of Ym(f3) is completely described by the formula (3.9). and the m- 
dependence of the associated polynomials qim is determined by (3.10). 

As was mentioned, Wo(e+ 2iw) = Wo(e) and obviously Wo(O+n) = Wo(e), i.e. 
Wo(0) is a double-periodic funcition. If, additionally, one assumes that this function 
vanishes at the ends of the (0, z) interval, then it is natural to take an elliptic function 
for it 

wm(e) = I Ym(e) 1’. 

W,(B) = C sn (2KO/z) 
where K =  K ( q )  is an elliptic integral of first kind, serving as a real period for sn(z). 
The constant C is defined by the normalization condition 

[ w0p) sin e de  = 1 (4.9) 

and is equal to (2~Kln’) sinh a, where K is the elliptic modulus. Our assumption for 
the weight function can be justified by results of Askey and Wilson [4] who obtained 
an explicit expression of the weight function for generic 4@3 polynomials. So we have 
finally 

(4.10) WO@) = ( 2 ~ K / n ’ )  sinh w sn(2Ke/n). 

In the general case m30 one obtains 

W,(O) = (2xK/n2) sinb w sn(2KO/z+ imK‘) 
m-I 

x n (1 -a”-’-= 213 + q u m - l - = )  114 (4.11) 
k=O 

(iK’=2iwK/n is the imaginary period of the elliptic functions). 
Askey and Wilson state ‘No facts have been found for the q-extension of Legendre 

polynomials. This may be because these polynomials have no special properties or 
because we don’t known where they live’ [4]. 

Now we do know ‘where these polynomials live’-it is representation space for a 4- 
algebra-but the origin of double-periodicity is still quite obscure. 

5. Conclusion 

Thus, a simple and direct question-how to obtain an explicit expression for 
representation functions?-received a final answer: these functions are reduced to 
polynomials compactly written through the basic hypergeometric function 4$3(q), 
whose parameters contain quantum numbers j, m and argument 8. Nearly the same 
might be said about ordinary Legendre polynomials: ,Q3 is replaced by the Gaussian 
hypergeometric function ‘F, and parameter q is k e d  at 1. So the general result is 
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more or less expected. since the parameter q was simply inserted ‘by hand‘ into 
commutation relations of the SUq(2) algebra. 

But a deeper insight would recognize the unusual features contained in the 
discussed results. These are: 

(i) emergence (in all eigenfunctions) of the factor g(O)=Y,(B;w), being a 
double-periodic function of 8; 

(ii) radical changes of topology of the complex 0-plane-it becomes a torus 
instead of uniform plane. 

Both properties are tightly bound together and give rise to the problem of their 
origin. Perhaps the answer is that the function sinh 20 Join the commutation relations 
(1.1) generates finite shifts of the required size in the imaginary direction. In turn, this 
could lead to a corresponding imaginary period in the complex &plane. It is 
interesting to note that Macfarlane [3] found that the vacuum state of a q-oscillator 
reduces to some theta-function; however, the origin of it is, as yet, unclear. 

Finally, we would like to stress that our treatment of the spherical q-function is 
quite different from previous approaches [7], where the corresponding q-functions 
depend on non-commuting variables beloning to the SU,(2) group. In particular, our 
metric (2.1) coincides with the standard ‘classical‘ one for a two-dimensional sphere, 
in contrast to all previous treatments dealing with rather exotic ‘quantum spheres’. 
Such (e, v) parametrization of spherical q-functions ismost attractive for the purposes 
of physical applications. 

One can expect that the results obtained will be useful in those probelms where the 
quantum algebras appear to be a dynamical symmetry of the considered system- 
lattice models, quantum Hall effects, etc. 

Appendix 

Here, we explicity obtain the ‘horizontal’ recurrence relations (4.1) and (4.2). For 
this, we use the technique of AW(3) algebra [5 ] ,  this being a powerful tool for 
different q-problems. 

Let us introduce two operators 

K~ = J $  K~ = e. (A.1) 

It can be directly verified by means of the expIicit realization (2.3) that Kl, K2 together 
with their q-mutator (2.5) form the algebra 

with structure constants 

C, =sinh22w C, = coth* UJ D = - 2 cosh w sinh’ w m. (A.3) 

Recall that the quantum number m is assumed to be fixed (‘horizontal’ recurrence) 
as an eigenvalue of the operator Jo commuting with both K, and K2. 
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The algebra ( A . 2 )  is a special case of the so-called Askey-Wilson algebra AW(3) 
introduced in [5]. Its Casimir operator 0 commuting with all K ,  is 

&={K,, ~ ~ ] / 2 + c o s h 2 w ( C , K : + C , K : ) + 2 D c o s h Z w K ,  (A.4) 
where {. . .} stands for anticommutator and 

K~=[KI ,  &]-e. 

Q = coth2 w(sinh2 a, + cosh 2 0  m). 
Given the realization (A.l) and (2.3), Casimir 0 takes the value 

('4.5) 
A specific feature of AW(3) is that the operator Kz is three-diagonal in discrete 

basis ly, of the operator K , .  Namely 

K2 Vim = a , + ~ . ~ V j +  1.m + a,mVi-~, ('4.6) 
where the coefficients a, are directly obtained from AW(3) as [fil 

with Ai being the eigenvalues of K, (see (2.7)). Inserting explicit expressions for Ai. Ci, 
D and Q into (A.7) one obtains 

(A.8) 

Note that AW(3) determines aim only up to an arbitrary phase factor which may be 

a& = cosh' w j [ j +  m ] [ j -  m ) / [ 2 j +  11 [2 j -  11 
which is the required formula (4 .2)  for the recurrence coefficients. 

connected with that of vim. 
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